Self-healing hydrogels containing reversible oxime crosslinks.

نویسندگان

  • Soma Mukherjee
  • Megan R Hill
  • Brent S Sumerlin
چکیده

Self-healing oxime-functional hydrogels have been developed that undergo a reversible gel-to-sol transition via oxime exchange under acidic conditions. Keto-functional copolymers were prepared by conventional radical polymerization of N,N-dimethylacrylamide (DMA) and diacetone acrylamide (DAA). The resulting water soluble copolymers (P(DMA-stat-DAA)) were chemically crosslinked with difunctional alkoxyamines to obtain hydrogels via oxime formation. Gel-to-sol transitions were induced by the addition of excess monofunctional alkoxyamines to promote competitive oxime exchange under acidic conditions at 25 °C. The hydrogel could autonomously heal after it was damaged due to the dynamic nature of the oxime crosslinks. In addition to their chemo-responsive behavior, the P(DMA-stat-DAA) copolymers exhibit cloud points which vary with the DAA content in the copolymers. This thermo-responsive behavior of the P(DMA-stat-DAA) was utilized to form physical hydrogels above their cloud point. Therefore, these materials can either form dynamic-covalent or physically-crosslinked gels, both of which demonstrate reversible gelation behavior.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Tough Self-Healing Elastomers by Molecular Enforced Integration of Covalent and Reversible Networks.

Self-healing polymers crosslinked by solely reversible bonds are intrinsically weaker than common covalently crosslinked networks. Introducing covalent crosslinks into a reversible network would improve mechanical strength. It is challenging, however, to apply this concept to "dry" elastomers, largely because reversible crosslinks such as hydrogen bonds are often polar motifs, whereas covalent ...

متن کامل

Self-Healing Supramolecular Hydrogels Based on Reversible Physical Interactions

Dynamic and reversible polymer networks capable of self-healing, i.e., restoring their mechanical properties after deformation and failure, are gaining increasing research interest, as there is a continuous need towards extending the lifetime and improving the safety and performance of materials particularly in biomedical applications. Hydrogels are versatile materials that may allow self-heali...

متن کامل

Engineering mechanical dissipation in solid poly ( ethylene glycol ) hydrogels

Growing evidence supports that the unique mechanical behavior of mussel byssal threads, such as high toughness and self-healing, rely on an intricate balance of permanent covalent and reversible metal coordination bonds. Inspired by this material crosslink chemistry balance, we synthesized polyethylene glycol (PEG) hydrogels with two crosslinked networks; a primary permanent network composed of...

متن کامل

Rapid self-healing hydrogels.

Synthetic materials that are capable of autonomous healing upon damage are being developed at a rapid pace because of their many potential applications. Despite these advancements, achieving self-healing in permanently cross-linked hydrogels has remained elusive because of the presence of water and irreversible cross-links. Here, we demonstrate that permanently cross-linked hydrogels can be eng...

متن کامل

Bio-inspired self-healing structural color hydrogel.

Biologically inspired self-healing structural color hydrogels were developed by adding a glucose oxidase (GOX)- and catalase (CAT)-filled glutaraldehyde cross-linked BSA hydrogel into methacrylated gelatin (GelMA) inverse opal scaffolds. The composite hydrogel materials with the polymerized GelMA scaffold could maintain the stability of an inverse opal structure and its resultant structural col...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Soft matter

دوره 11 30  شماره 

صفحات  -

تاریخ انتشار 2015